Chapitre 6

TESTS SUR LA MOYENNE ET LA VARIANCE.

1. TEST SUR LA MOYENNE.

X suit la loi normale $N(\mu, \sigma)$.

$$H_0: \mu = \mu_0$$
 $H_1: \mu \neq \mu_0$

M: estimateur empirique de la moyenne S^2 : estimateur empirique de la variance

Test de Student:

$$T = \frac{M - \mu_0}{S/\sqrt{(n-1)}}$$

Loi de T sous H₀ : loi de Student de degré de liberté n-1

Région critique :

]-
$$\infty$$
, μ_0 - t_{α} s/(n - 1)^{1/2}[\cup] μ_0 + t_{α} s/(n - 1)^{1/2}, + ∞ [

 t_{α} étant défini par P(| T | > t_{α}] = α

Exemple: l'objectif fixé par les responsables nationaux de l'enseigne Euromarket est un montant moyen des achats égal à 420F. Le directeur commercial s'inquiète du montant moyen observé (316.95F) dans son hypermarché et veut donc vérifier si cette valeur montre effectivement une différence. La variance estimée est égale à $s^2 = 42902.472$.

Pour un risque de première espèce de 5% et un degré de liberté égal à 49, on a :

$$t_a = 2.02$$
.

La région critique est donc :

La valeur 316.95 appartient à la région critique. On rejette donc l'hypothèse nulle.

Équivalence : on calcule l'intervalle de confiance de la moyenne (cf. chapitre 5) :

$$IC = \int 257.173,$$

La valeur 420 n'appartient pas à l'intervalle de confiance. Elle n'est pas acceptable.

2. Comparaison de moyennes.

$$X_1 = N(\mu_1, \sigma_1)$$
 $X_2 : N(\mu_2, \sigma_2)$
 $H_0 : \mu_1 = \mu_2$ $H_1 : \mu_1 \neq \mu_2$

 M_1 et S_1^2 estimateurs empiriques de la moyenne et la variance de X_1 M_2 et S_2^2 estimateurs empiriques de la moyenne et la variance de X_2 n_1 et n_2 : nombres d'observations de X_1 et X_2 .

Statistique U:

$$U = \frac{M_1 - M_2}{[S_1^2/(n_1-1) + S_2^2/(n_2-1)]^{1/2}}$$

Loi de U sous H_0 : la loi normale centrée réduite (n_1 et n_2 suffisants, $\sigma_1 = \sigma_2$).

Région critique :

$$RC =] - \infty, -u_{\alpha}] U [u_{\alpha}, + \infty [$$

 u_{α} étant défini par $P(|U| > u_{\alpha}) = \alpha$

<u>Exemple</u>: la moyenne des achats de l'autre hypermarché (410F) a été calculée sur 100 clients. La variance des achats calculée sur ces 100 clients est égale à 35401.

On en déduit :

$$T = \frac{316.95 - 410}{2.65}$$
$$= \frac{2.65}{[42902.47/49 + 35401/99]^{1/2}}$$

Pour un risque de première espèce $\alpha = 0.05$, on a $u_{\alpha} = 1.96$. La valeur observée t appartient à la région critique et on rejette donc l'hypothèse nulle : la différence entre les deux moyennes n'est vraisemblablement pas due uniquement au hasard.

3. Test sur la variance.

X suit la loi normale $N(\mu, \sigma)$.

$$H_0: \sigma^2 = \sigma_0^2 \qquad \qquad H_1: \sigma^2 \neq \sigma_0^2$$

M : estimateur empirique de la moyenne S² : estimateur empirique de la variance

Statistique:

$$X^2 = n S^2/\sigma_0^2$$

Loi de X^2 sous H_0 : loi du χ^2 de degré de liberté $\nu = n-1$.

Région Critique:

$$RC = [0, \chi_{\alpha}^{2}] \cup [\chi_{1-\alpha}^{2}, +\infty[$$

 χ_{α}^{2} et $\chi_{1-\alpha}^{2}$ étant définies par la relation :

$$P(X^2 < \chi_{\alpha}^2) = \alpha/2$$
 $P(X^2 > \chi_{1-\alpha}^2) = \alpha/2$

Exemple: nous supposons que la loi de probabilité de la v.a. âge est la loi normale (en éliminant les trois clients retraités) et testons l'hypothèse H_0 : $\sigma^2 = 50$.

La valeur observée sur les 47 clients est $s^2 = 47.86$. On en déduit :

$$X^2 = 47 \times 47.86 / 50 = 44.99$$

Nous choisissons comme risque de première espèce $\alpha=0.05$. La table donne directement pour le degré de liberté $\nu=46$:

$$\chi_{\alpha}^{2} = 29.160$$
 tel que $P(X^{2} < \chi_{\alpha}^{2}) = 0.025$
 $\chi_{1-\alpha}^{2} = 66.617$ tel que $P(X^{2} > \chi_{1-\alpha}^{2}) = 0.025$

La région critique est : $RC = [0, 29.160] \cup [66.617, + \infty[$. La valeur observée n'appartient pas à la région critique et on accepte l'hypothèse nulle.

En déterminant l'ensemble des valeurs σ^2 telles que l'on accepte l'hypothèse nulle, on retrouvera l'intervalle de confiance déterminé dans le chapitre 5. On pourra examiner aussi la figure 11 du chapitre 5.

4. Comparaison de variances.

$$X_1 = N(\mu_1, \sigma_1)$$
 $X_2 : N(\mu_2, \sigma_2)$
 $H_0 : \sigma_1^2 = \sigma_2^2 = \sigma^2$ $H_1 : \sigma_1^2 \neq \sigma_2$

 M_1 et S_1^2 estimateurs empiriques de la moyenne et la variance de X_1 M_2 et S_2^2 estimateurs empiriques de la moyenne et la variance de X_2 n_1 et n_2 : nombres d'observations de X_1 et X_2 .

Statistique:

$$F = \frac{n_1 S_1^2 / \sigma_1^2}{n_2 S_2^2 / \sigma_2^2} \times \frac{n_2 - 1}{n_1 - 1}$$

Loi de F sous H₀ : loi de Fisher de degrés de liberté n₁-1 et n₂-1.

Région Critique:

RC =
$$]0, f_{\alpha}[U] f_{1-\alpha}, +\infty[$$

 f_{α} et $f_{1-\alpha}$ étant définies par : $P(F < f_{\alpha}) = \alpha/2$, $P(F > f_{1-\alpha}) = \alpha/2$

<u>Exemple</u>: Pour contrôler l'égalité des moyennes des achats des deux hypermarchés, nous avons supposé que les variances étaient égales. Nous le vérifions ci-dessous, en supposant que les lois sont normales. Les variances des achats sont égale à :

$$s_1^2 = 42902.47 \ (n_1 = 50)$$
 $s_2^2 = 35401 \ (n_2 = 100)$

On en déduit :

$$f = \frac{50 \times 42902.47 / 49}{3} = 1.224$$

$$100 \times 35401 / 99$$

Nous choisissons comme risque de première espèce $\alpha = 0.02$. Les degrés de liberté sont $v_1 = 49$ et $v_2 = 99$.La table donne directement $f_{1-\alpha} = 1.73$.

Pour calculer f_a , il faut considérer la v.a. 1/F, qui suit la loi de Fisher de degrés de liberté $v_1 = 99$ et $v_2 = 49$. On a :

$$P(1/F > 1/f_a)$$
 = \Leftrightarrow $1/f_\alpha =$ \Leftrightarrow $f_\alpha =$ 0.01 1.82 0.549

La région critique est donc : RC = [0, 0.549] $[1.73, +\infty[$.

La valeur observée n'appartient pas à cette région critique et on accepte l'hypothèse d'égalité des variances.

5. Introduction au risque de seconde espèce et à la fonction puissance.

Définition:

<u>risque de seconde espèce</u>: probabilité d'accepter l'hypothèse nulle quand elle est fausse.

<u>puissance</u>: probabilité de rejeter l'hypothèse nulle quand elle est fausse.

$$\pi = 1 - \beta$$

Puissance du test sur la variance :

Hypothèses:

$$H_0: \sigma^2 = \sigma_0^2 \qquad \qquad H_1: \sigma^2 = \sigma_1^2$$

Acceptation de l'hypothèse nulle : n S^2/σ_0^2 n'appartient pas à la région critique.

Risque β de seconde espèce (sous H_1):

$$\beta = P \left(\chi_{\alpha}^{2} < \frac{n S^{2}}{\sigma_{0}^{2}} < \chi_{1-\alpha}^{2} \right)$$

Calcul de β:

$$\begin{split} \beta &= & P \left(\chi_{\alpha}^{2} \right. < \frac{n S^{2}}{\sigma_{0}^{2}} < & \chi_{1-\alpha}^{2} \right) \\ &= & P \left(\chi_{\alpha}^{2} \right. < \frac{n S^{2} \sigma_{1}^{2}}{\sigma_{0}^{2} \sigma_{1}^{2}} < & \chi_{1-\alpha}^{2} \right) \\ &= & \chi_{\alpha}^{2} \sigma_{0}^{2} & n S^{2} & \chi_{1-\alpha}^{2} \sigma_{0}^{2} \end{split}$$

$$= P \left(\frac{}{\sigma_1^2} \quad < \frac{}{\sigma_1^2} \quad \sigma_1^2 \right)$$

Loi de n S^2/σ_{1}^2 sous H_1 : loi du χ^2 de degré de liberté $\nu=n-1$.

<u>Exemple</u>: nous donnons ci-dessous la puissance du test sur la variance de l'âge. La valeur testée est fixée à $\sigma^2 = 50$, le risque de première espèce à 0.05, et le nombre d'observations est égal à 47.

La lecture de ce tableau donne le renseignement suivant : la probabilité de rejeter l'hypothèse $\sigma^2 = 50$ lorsque la vraie valeur est 33.333 est égale à 0.432 pour un risque de première espèce égal à 0.05.

Ran	variance	puissanc	Ran	variance	puissanc
g	vraie	e	g	vraie	e
1	20.0000	0.993	11	64.4444	0.263
2	24.4444	0.915	12	68.8889	0.379
3	28.8889	0.699	13	73.3333	0.497
4	33.3333	0.432	14	77.7778	0.606
5	37.7778	0.227	15	82.2222	0.701
6	42.2222	0.109	16	86.6667	0.778
7	46.6667	0.057	17	91.1111	0.839
8	51.1111	0.053	18	95.5556	0.885
9	55.5556	0.090	19	100.0000	0.919
10	60.0000	0.162			

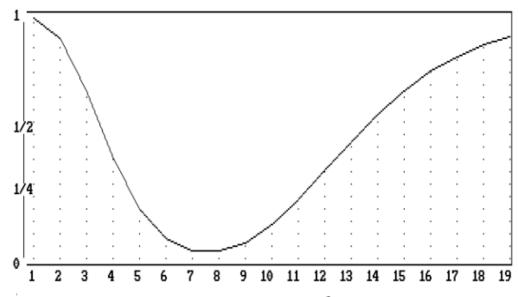


Figure 4.6 : fonction puissance ($\sigma^2 = 50$, v = 46, $\alpha = 0.05$)